

Low-Frequency First: Eliminating Floating Artifacts in 3D Gaussian Splatting

https://jcwang-gh.github.io/EFA-GS

Motivation

➤ 3D Gaussian Splatting (3DGS) is an explicit learning-based 3D representation method that enables efficient rendering and achieves high visual quality simultaneously.

3DGS-based Reconstruction

Ground Truth

Reconstruction Results

3DGS-based Editing

Editing Results

Motivation

➤ However, 3DGS is also sensitive to noise and sometimes produce artifacts, which significantly degrade visual fidelity.

3DGS-based Reconstruction

Ground Truth

Reconstruction Results

3DGS-based Editing

Editing Results

Motivation

➤ Previous researches find that depth-based regularization methods can eliminate these artifacts. However, they still have some limitations. (e.g. erosions of delicate details)

3DGS-based Reconstruction

Ground Truth

Reconstruction Results

Depth Regularization Results

We need to find the cause of these artifacts and design a method to solve this issue!

Preliminary: Frequency View

> Relation between 3DGS attributes and frequency:

In 3DGS, the expression of Gaussian primitive is:

$$G(x) = \frac{1}{(2\pi)^{\frac{3}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-p)^{T} \Sigma^{-1}(x-p)\right),$$

which can be represented as a weighted sum of different frequency components:

 $\mathcal{G}(x) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^n} \mathcal{F}(\mathcal{G}(x), \omega) e^{i\omega^T x} dx,$

p represents the center location. The covariance matrix $\Sigma = RSS^TR^T$, R and S are the rotation and scaling matrix, they are represented by a quaternion q and a 3D vector s respectively.

Preliminary: Frequency View

Given an angular frequency ω , the corresponding weight is:

$$|\mathcal{F}(\mathcal{G}(x),\omega)| = \exp\left(-i\omega^T p - \frac{\omega^T \Sigma \omega}{2}\right),$$

which decays as the norm of the angular frequency $|\omega|$ increases due to the positive-definiteness property of Σ .

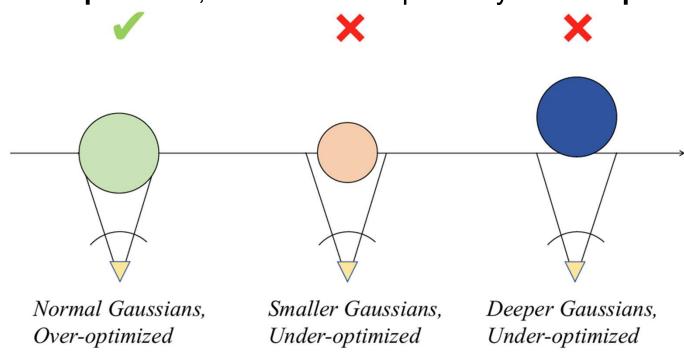
R is an orthogonal matrix, so S determines the frequency components of a Gaussian primitive. **A larger Gaussian contains relatively more low frequency information and vice versa.**

Preliminary: Frequency View

>Nyquist-Shannon Sampling Theorem: The sampling rate must be at least twice the bandwidth (the highest frequency) ν of a band-limited signal to reconstruct the signal without aliasing.

Previous work [1] provided a method to estimate the sampling rates of Gaussians f_k

 $v \propto \max_{k=1,\dots,N} \left(\mathbf{1}_k(p_i) \cdot \frac{f_k}{d_k} \right),$


f and d are the focal length and depth respectively. The sampling interval T is the inverse of sampling rate

$$T = \frac{1}{\nu}$$

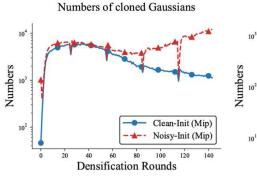
Where $\mathbf{1}_k$ is an indicator denoting the visibility of Gaussians.

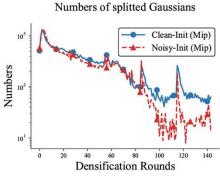
[1] Yu, Z., Chen, A., Huang, B., Sattler, T., & Geiger, A. (2024). Mip-splatting: Alias-free 3d gaussian splatting. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 19447-19456).

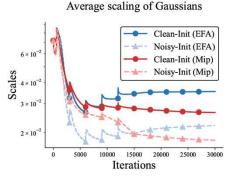
- There are 2 key factors determining if a Gaussian can be sufficiently optimized: scale (frequency bandwidth) and depth (sampling interval).
- For each Gaussian, if its scale is **larger** than the sampling interval, it is probably **over-optimized**; **otherwise** it is probably **under-optimized**.

> Hypothesis: Low quality initialization can be viewed as accurate initialization with noise.

We conduct experiments using both clean and noisy initialization to estimate the impact of low-quality initialization. We also record the average scalings of Gaussians.

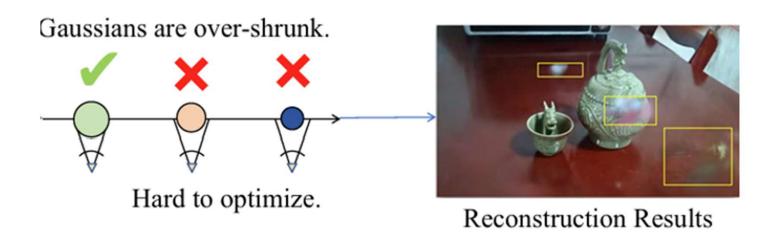



(a) Clean init. (b) Noisy init. (c) Noisy init (d) Noisy init (training). with EFA-GS.


PSNR		[10]	kitchen [11]		
	Train	Test	Train	Test	
Clean init (Mip-splatting)	33.94	29.74	34.74	32.03	
Noisy init (Mip-splatting)	34.02	27.53	33.68	28.39	
/Clean - Noisy/ (Mip-splatting)	0.08	2.21	1.06	3.64	
Clean init (EFA-GS, simple)	32.88	30.66	31.54	31.23	
Noisy init (EFA-GS, simple)	32.89	29.73	31.33	29.48	
/Clean - Noisy/ (EFA-GS, simple)	0.01	0.93	0.21	1.75	

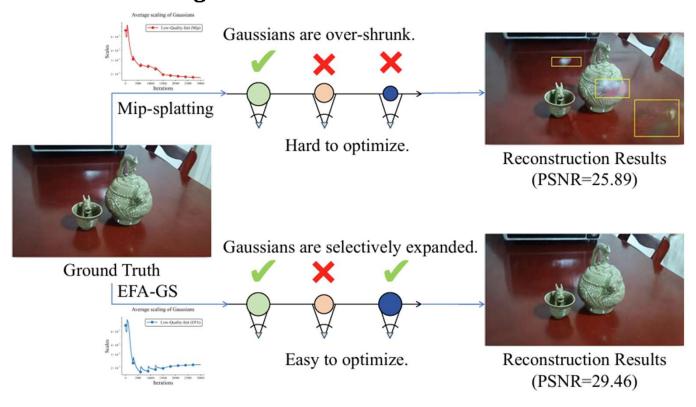
Furthermore, we also conduct sparse-view experiments to explore the relation between under-optimized Gaussians and artifacts. These experiments indicate that:

- Corrupted initialization results in excessive shrinkage of most Gaussians.
- Floating artifacts harm more severely to the visual quality of testing views.
- ➤ Under-optimized Gaussians are related with the existence of artifacts.


Mip-splatting	PSNR
8-Views	17.38
12-Views	18.44
16-Views	20.74

(a) Numbers of cloned Gaussians.

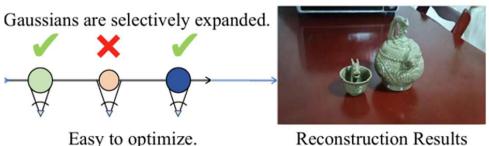
(b) Numbers of splitted Gaussians.


(c) Average scalings of Gaussians.

➤ Proposition: In low-quality initialization scenarios, under-optimized Gaussians would be more sensitive to noise and more likely to become floating artifacts than over-optimized ones in the optimization process.

Method

We propose our EFA-GS, an enhanced 3DGS in order to effectively mitigate floating artifacts. EFA-GS consists of the Low-Frequency Come-First (LFCF) algorithm and some strategies.


Method

>LFCF algorithm: The core idea of LFCF algorithm is to selectively expand Gaussians during training.

Both the expanding and shrinking operations are implemented as

$$s' = s \cdot c$$
,

where c is a 3D vector controlling expansion or shrinkage.

Reconstruction Results

Algorithm 1 LFCF algorithm

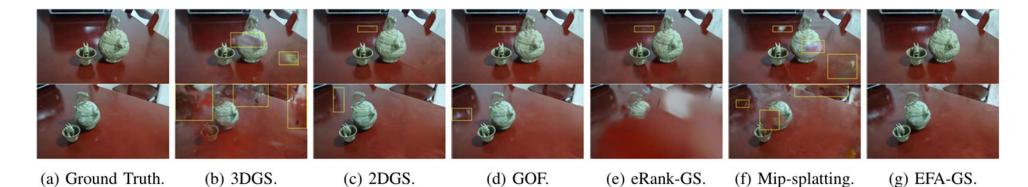
```
Require: previous gradients PGrad(\cdot), current gradients
    Grad(\cdot), enlarging factor s(\cdot), processing threshold \tau,
    opacities \alpha(\cdot), opacity threshold \epsilon, splitting threshold \eta(\cdot)
 1: for i^{th} Gaussian in all Gaussians do
        if Grad(i) > \tau then
            if Grad(i) > PGrad(i) then
 3:
                ExpandGaussian(i,s(i))
 4:
 5:
                ShrinkGaussian(i)
 6:
                SplitGaussian(i)
            end if
        end if
        PGrad(i) \leftarrow Grad(i)
11: end for
12: for i^{th} Gaussian in all Gaussians do
        if \alpha(i) < \epsilon then
13:
            RemoveGaussian(i)
14:
        end if
16: end for
```

Method

We design several strategies to preserve delicate details by controlling c. Here are 2 main strategies:

➤ Depth-based Strategy: We observe that deeper Gaussians have lower sampling rates and are more difficult to optimize, so we assign deeper Gaussians lower enlarging factors.

► Scale-based Strategy: The strategy treats scaling factors of different axes differently. To preserve the Gaussian volume, we design a volume-preserving setting $\prod c_i = 1$


Stretching Gaussians

We estimate our EFA-GS on 3D Reconstruction and Editing tasks. For Reconstruction tasks, the experimental settings are:

- ➤ Evaluation Metrics: PSNR, LPIPS, SSIM.
- ➤ Dataset: Mip-NeRF 360, RWLQ, TanksandTemples.
- Comparison methods: Vanilla 3DGS, Mip-splatting, 2DGS, Gaussian Opacity Fields, eRank-GS.

➤ RWLQ results: Our EFA-GS achieve stateof-the-art performance and effectively eliminate floating artifacts.

	PSNR↑	SSIM↑	LPIPS↓
2DGS [20]	28.00	0.95	0.16
GOF [24]	27.92	0.95	0.15
eRank-GS [33]	23.16	0.91	0.18
Vanilla 3DGS [1]	27.71	0.95	0.15
EFA-GS(3DGS)	28.70	0.95	0.14
Mip-splatting [9]	26.67	0.94	0.16
EFA-GS(Mip, default)	28.35	0.95	0.15

➤ Mip-NeRF 360 results: Our EFA-GS effectively preserve delicate details and achieve state-of-the-art performance.

	PSNR↑	SSIM↑	LPIPS↓
2DGS	27.00	0.81	0.24
GOF	27.33	0.82	0.20
eRank-GS	27.69	0.84	0.20
Vanilla 3DGS EFA-GS(3DGS)	27.58 27.52	0.82 0.82	0.20 0.21 0.21
Mip-splatting	27.92	0.84	0.18
EFA-GS(Mip, default)	27.94	0.84	0.18

(a) Ground Truth.

(b) 3DGS.

(c) 2DGS.

(d) GOF.

(e) eRank-GS.

(f) Mip-splatting.

(g) EFA-GS.

FanksandTemples results: Our EFA-GS effectively mitigate floating artifacts and achieve state-of-the-art performance.

	Overall			Low-Quality Init			
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
2DGS	21.17	0.78	0.32	18.98	0.72	0.41	
GOF	19.80	0.77	0.30	17.84	0.67	0.39	
eRank-GS	18.43	0.72	0.37	16.37	0.62	0.45	
Vanilla 3DGS	21.51	0.79	0.28	19.11	0.69	0.37	
EFA-GS(3DGS)	21.69	0.80	0.28	19.45	0.69	0.36	
Mip-splatting EFA-GS(Mip, default)	20.63 21.31	0.78 0.79	0.29 0.28	18.15 19.07	0.67 0.69	0.39 0.37	

(a) Ground Truth.

(b) 3DGS.

(c) 2DGS.

(d) GOF.

(e) eRank-GS.

(f) Mip-splatting.

(g) EFA-GS.

➤ Ablation Studies: Each component of EFA-GS is useful: they either improve the visual quality or reduce the computation cost.

Speed experiments: EFA-GS efficiently improve visual quality with limited computation costs.

	Depth	Scale	PSNR↑	SSIM↑	LPIPS↓
EFA-GS	✓	√	27.94	0.84	0.18
EFA-GS(w/o depth)		✓	27.83	0.83	0.18
EFA-GS(w/o scale)	✓		27.91	0.83	0.18
EFA-GS(w/o scale&depth)			27.37	0.83	0.19
EFA-GS Settings	Str 1	Str 2	Str 3	PSNR↑	Time↓
EFA-GS(w/o all str)				32.08	20'22"
EFA-GS(w/o str 1&2)			✓	32.12	20'12"
EFA-GS(w/o str 1)		\checkmark	✓	32.19	20'21"
EFA-GS(w/o str 1&3)		\checkmark		32.18	20'49"
EFA-GS(w/o str 3)	✓	✓		32.50	23'10"
EFA-GS(w/o str 2&3)	\			32.36	22'53"
EFA-GS(w/o str 2)	√		✓	32.37	22'40"
EFA-GS	✓	\checkmark	✓	32.56	22'55"

			Overall		Low-Quality Init			
	PSNR↑	SSIM↑	LPIPS↓	Aver Time(min)↓	PSNR↑	SSIM↑	LPIPS.	Aver Time(min)↓
Vanilla 3DGS	21.51	0.79	0.28	32.3	19.11	0.69	0.37	31.5
EFA-GS(3DGS)	21.69	0.80	0.28	29.2	19.45	0.69	0.36	29.0
eRank-GS	18.43	0.72	0.37	75.8	16.37	0.62	0.45	72.0
EFA-GS(eRank)	20.32	0.77	0.31	80.3	17.78	0.65	0.40	77.8
GOF	19.80	0.77	0.30	83.6	17.84	0.67	0.39	78.8
EFA-GS(GOF)	20.57	0.79	0.28	86.9	19.07	0.69	0.37	85.5

➤ Hyperparameter Analysis.

PSNR↑	r=1	r = 2	r = 5
$c_{max} = 1.50$ $c_{max} = 1.75$ $c_{max} = 2.00$	27.62 27.60 27.58	27.94 27.87 27.89	27.90 27.92 27.91

*▶*3D Editing.

Ground Truth "Turn him into Hulk"

Summary

- ➤ We propose a theoretical framework to analyze the underlying mechanism of floating artifacts.
- ➤ We present EFA-GS to effectively and efficiently mitigate artifacts. EFA-GS consists of LFCF algorithm and other strategies.
- Experiments shows EFA-GS effectively mitigate artifacts in various tasks.

Thanks for Your Listening!

Presented by Jianchao Wang

wangjianchao@nuaa.edu.cn

https://jcwang-gh.github.io/EFA-GS

